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Domain-size distribution in a Poisson-Voronoi nucleation and growth transformation
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We present an analytical result for the evolution of the domain-size distribution during the growth of
simultaneously nucleated domains. The final stage of this transformation is the well-known Poisson-Voronoi
tessellation. The method can be easily extended to the calculation of the probability distribution of any other
geometric characteristic. As far as we know, it is the first time that an exact result is given for this classic

system.
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The geometric characteristics of the structure generated in
nucleation and growth processes have large influences on the
properties of many different systems. This work deals with
one of the simplest nucleation and growth processes, the so
called “cell model” [1], where an homogenous medium is
progressively occupied by growing domains or “crystals,” all
with the same isotropic growth rate and all emerging from an
initial random point distribution of nuclei or “seeds.” The
collision of two domains with equal growth rate generates a
flat border or face between them. Hence the initial spherical
domains become progressively changed to polyhedric cells
as the number of collisions with neighboring domains in-
creases. When the domains occupy all the surrounding space
left by their neighbors, their growth stops and they become
Voronoi polyhedra. The final stage of this process is the well-
known Poisson-Voronoi (PV) network or tessellation [2], and
so we will call it here a PV nucleation and growth transfor-
mation. In spite of its simplicity, PV transformations and
tessellations are widely observed in different fields. Growth
of pre-existing nuclei is observed in solidification and glass
crystallization, leading to partially crystallized or polycrys-
talline materials [3,4]; the macroscopic properties of these
materials are dependent on the topological features of the
crystals such as size, shape, number of faces, or number of
vertices. Moreover, PV transformations and tessellations are
applied in other scientific fields including geology [5], biol-
ogy [6,7], ecology [8], geography [9], and astrophysics [10].

The crystal size probability density function (PDF) of a
PV tessellation, that is, the final structure obtained in a PV
transformation, is known to be accurately predicted by a
gamma distribution [10,11]

f(a) = a”" exp(- vpa), (1)

where a is the size of the crystals and p is the density of
seeds. The size a corresponds to the length, the area, or the
volume of the crystals in one-, two-, or three-dimensional
tessellations and the mean value of a is obviously p~!. The
value of the exponent v depends on the space dimension D
with values of v=2, 3.575, and 5.586 for D=1, 2, and 3,
respectively [12,13]. The gamma distribution of sizes in a
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PV tessellation was derived analytically for the one-
dimensional case [1,14], while it was “empirically” obtained,
fitting the results of computer simulations, for the two- and
three-dimensional cases [10,11]. The time evolution of the
crystal size PDF during the transformation was analytically
solved by Axe et al. [14] for the one-dimensional case. As far
as we know, there are not analytical solutions for the evolu-
tion of the crystal size PDF for two- and three-dimensional
PV transformations. Two semiempirical approaches, based
on a set of evolution equations for the size populations, were
presented previously [15,16]. In this Rapid Communication
we present an analytical calculation of the temporal evolu-
tion of the crystal size PDF in a PV transformation. This
calculation method allows the calculation of the size PDF to
any desired accuracy at any finite time during the PV trans-
formation, and it can be easily extended to the calculation of
the probability distribution of any other geometric character-
istic of the domains.

The two parameters determining completely a PV trans-
formation are the density of seeds p and the growth rate of
the crystals u. For the sake of simplicity, here we will assume
u=1, and so a crystal without collisions will be a sphere with
radius equal to the time ¢ elapsed since the beginning of the
transformation. It should be noted that, at a certain value of
the overall transformed fraction, the same geometrical con-
figuration is obtained regardless of the specific growth rate
function u(z), provided that u(z) is equal for all the growing
crystals. The overall transformed fraction x() is defined as
the fraction of space already occupied by the growing crys-
tals at time f. Therefore the results obtained for the u=1
system are representative of any PV transformation with the
appropriate time scaling. Moreover, the results shown in this
paper will be restricted to a transformation in a D=2 space.
Extension to D=1 and D=3 is straightforward obtained and
will be detailed elsewhere.

The basis of the present calculation is the distinction of
the crystals by their number of “extended” collisions. The
extended collisions include both actual collisions and colli-
sions screened by a nearer crystal. In a PV transformation
with u=1, a domain without collisions would occupy all the
space within a distance ¢ from its seed. Therefore each pair of
domains whose seeds are closer than 2¢ generates an ex-
tended collision. The number of extended collisions of a cer-
tain crystal corresponds to the number of neighboring seeds
found at a distance from the crystal origin smaller than 2¢. In
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the case of a two-dimensional PV transformation, the frac-
tion of crystals with k extended collisions is given by

(47*p)* exp(— 47’ p)
k! ’

Ty (1) = 2)
which is the probability of finding just k seeds in a 47> area.
Note that the term exp(—4>p) is the probability of finding
no seeds in such area, equal to the fraction of crystals T(z)
that have not yet collided at time ¢.

At a certain time ¢, each crystal has a collision configura-
tion which determines its size, free-boundary fraction, and
any other geometrical aspect. This collision configuration is
determined by the position of all the neighboring crystals
that may collide with it, that is, the position of the k neigh-
boring seeds nearer than 2¢ from the crystal origin. These
positions can be expressed by a distance 2¢; and an angle 6,
(i=1-k), with 0<f,<r and 0<6,<2. The probability of
finding a crystal with k extended collisions disposed in a
certain configuration {;, 6;} is

k

,tk, Hk,t) = 4kpk eXp(— 47Tt2p)H tidtidb’i, (3)
i=1

Pk(t],Hl,

which is obtained multiplying the probabilities 4pt,dt;d6; of
finding an i seed at a certain distance 2¢; and a certain angle
6,, and the probability exp(-4t>p) of finding no more seeds
inside the sphere of radius 2¢. In the previous equation we
assumed that indices are chosen in the order that collisions
took place, that is f,_; <t;<t;,;. If this temporal order was
not considered the probability in Eq. (3) would have to be
divided by k!.
By a variable change /;,=¢;/t, P, can be rewritten as

k

Pu(ly,6,, ... I, 6.1) = T, (1) ﬂk]_[ldlde,, (4)

where [; can range from 0 to 1 corresponding to #; ranging
from O to ¢. Each set {/;, 6;} determines a collision configu-
ration as the one shown in Fig. 1 for the case k=3. Exami-
nation of Eq. (4) shows that the probability distribution of
collision configurations {I;, 6;} for the crystals with k ex-
tended collisions is time invariant. The term T(¢) is the prob-

Explicit details of the Si(I,,0,,...,l, 0, functions will be
given elsewhere. As an example, the size of a crystal with

just one collision in a two-dimensional system is given by
Sy(ly, 6;)=1—7"[arccos(l,)~1,(1-17)"].
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FIG. 1. Possible collision configuration for a crystal with three
extended collisions at normalized times /;, /5, and /5.

ability of finding a crystal with k collisions at time ¢, while
the time-invariant term
k

k! I

i 1 dl,d e, (35)
is the probability of finding a certain collision configuration
among the population of crystals with k collisions. Therefore
the probability distribution of any geometrical property de-
pendent on the collision configuration is also time invariant.
For instance, in the case of the collision configuration of Fig.
1, a given set of values {/;,6,,l,,0,,l5,0;} determines the
shape of the crystal and its size. The probability of finding
this specific geometrical configuration among the population
of crystals with k=3 will be constant, while the total fraction
of crystals with k=3 will vary along the transformation.

As each collision configuration {/;, 0} determines un-

equivocally a normalized crystal size

a
s=—, 6
3 (6)
this implies that the population of crystals with a given k has
a time-invariant size PDF g;(s). The first of these size PDFs,
corresponding to k=0, is easily obtained as

Ss-1), (7)

where ¢ is the Dirac delta function. This means that all the
crystals without collisions have a circular shape of size a
=t> and s=1. Defining a function S,(/;, 8, , ... I, 6,) which
calculates the normalized size of a crystal with a given {/;, 6;}
configuration, the calculation of g;(s) for k=1 can be per-
formed by means of

go(s) =

k
O] Ldlae,
i=1

k

Lo O] 1dlae,. (8)
i=1

5(S—Sk(l1,01,

For small numbers of k and simple S} functions, the pre-
vious expressions can be integrated analytically. A numerical
integration using a Monte Carlo method is possible for any
value of k. Obviously, the larger the &, the longer the time
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FIG. 2. Time-invariant size distributions for crystals with a
number of extended collisions k=1, 2, 3, 4, and 5.

consumed by the numerical integration. Figure 2 shows the
calculated g;(s) for k=1---5. These functions correspond to
the time-invariant probability densities of finding a domain
with normalized size s among the population of domains that
have k neighboring seeds closer than 27 from their origin. In
the case of k=1, g,(s)=0 for any s <0.5 because the crystals
with just one collision have at least one-half of their initial
circular shape still not in contact with other domains. The
mean value of s given by the g.(s) functions decreases pro-
gressively as the number k increases, as expected.

Now, the total PDF of normalized sizes at a certain time ¢
can be calculated as

g(s,0) = 2 g($) (1), )
k=0

and the total size PDF f(a,1)= g(s,t)% is obtained using the
variable change in Eq. (6). Figure 3 (top) shows the com-
puted size PDF at a time where the overall transformed frac-
tion is x(7)=0.5, that is, when half of the overall space is
already occupied by the domains. The total size PDF f(a,t)
of Fig. 3 (top) is computed adding the contributions of the
gi(s) distributions with k<7. At x(r)=0.5, more than 99% of
the crystals have k=<7, the biggest contribution corresponds
to the crystals with k=2, which constitute 24% of the total,
and just 6.2% of the crystals remain with k=0 collisions. In
Fig. 3 (top), the contributions of the g,(s) functions with k
=1---5 are also shown. In the figure, the f(a,r) calculated
from Egs. (7)—(9) is compared with the size distribution ob-
tained in a stochastic simulation of the transformation. De-
tails of the stochastic simulations were given in Refs.
[13,15].

Figure 3 (bottom) shows the temporal evolution of the
size PDF. The solid lines correspond to the calculated f(a,r)
at overall transformed fractions of x(#)=0.3 and x(z)=0.6.
The final gamma distribution of Eq. (1), corresponding to
x(f)=1, is also shown in dashed lines. From Egs. (2) and (9),
the time evolution of the overall system can be considered an
addition of crystal k populations with time-invariant geo-
metrical characteristics, weighted by the number of these
crystals at a certain time 7. At the initial stages of the trans-
formation, the crystals with small k will constitute the main
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FIG. 3. (Top) Total crystal-size distribution in a PV transforma-
tion at a transformed fraction x(r)=0.5. Calculated size distribution
(thick line) compared with the results of a stochastic simulation
(bars). The contribution of each of the g;(s) distributions (with k
=0, 1, 2, 4, and 5) is also shown. (Bottom) Calculated crystal-size
distributions at x()=0.3 and x(¢)=0.6. The dashed line corresponds
to the final gamma distribution.

part of the total number of crystals. At x(r)=0.3, 24% of the
crystals have k=0 and 94% of crystals have k<3. In this
case, the estimation of the total PDF of the size, or of any
other geometrical characteristic, requires the evaluation of
the invariant probability distributions for a small number of &
values. As the transformation proceeds, the estimation of the
overall properties requires us to extend the calculation over
larger k values. At x(r)=0.6, the number of crystals with k
=<3 is reduced to 50%, and it is necessary to reach k=7 in
order to cover 95% of the total number of crystals. At the
final stages of the transformation x(f) — 1 as r—oo, and the
calculation becomes impractical. However, then the system
tends to the configuration of the widely studied PV tessella-
tion [17-19]. In the case of the crystal size, this means that
the size PDF at the final stages of the transformation is well
described by the gamma distribution of Eq. (1). It should be
noted here that although the calculation of the integrals in
Eq. (8) was performed using a numerical method, the deri-
vation of Eq. (8) is fully analytic. In fact, the calculation of
the f(a,t) can be performed with any desired accuracy at any
finite time .

Another interesting property in a nucleation and growth
transformation is the free boundary of the crystals. In a two-
dimensional space, this is determined by the fraction of the
originally circular perimeter which is not in contact with

040107-3



PINEDA, GARRIDO, AND CRESPO

other transformed domains. For the crystal configuration
shown in Fig. 1 the free boundary would correspond to the
circular borders of the shadowed area. Similarly to any other
geometrical property, each particular collision configuration
{l;,6;} determines a value of the free-boundary fraction; a
procedure similar to the one described above by Egs. (8) and
(9) allows the calculation of the free-boundary PDF of the
crystals at any finite time during the transformation. Results
of this calculation for PV transformations in one, two, and
three dimensions will be presented elsewhere. Here, we fo-
cus on the mean free-boundary fraction of the crystals. In the
case of a two-dimensional transformation, a collision deter-

mined by the parameter /; occupies a fraction of crystal pe-
arccos(l;)

rimeter equal to , which is always smaller than 0.5. As
any #; angle is equally probable, after each collision the
probability that a certain point in the crystal’s original

boundary remains in contact with untransformed space is
arccos(l;)

reduced by a factor 1-— . For a crystal with a given
number k of extended collisions and a given set {/;} of colli-
sion distances, the average free-boundary fraction is

k
10 [1 ~ arcc;s(li) ]’ (10)
i=1

and therefore the mean free-boundary fraction of the crystals
with k collisions is obtained as

k(! 2m arccos(l)
—y lldl,dal
s 1,=0 Y 6,=0 =l 01 1 T
! rk arccos(l;) 4-1\*
=2kJ f H[l——’]lﬂl;(—) .
1,=0 =0 i=1 ™ 4

(11)

This result indicates that each extended collision provokes
an average reduction of one-quarter of the crystal free-
boundary fraction. Furthermore, the overall free-boundary
fraction of all the crystals at a certain time ¢ is then
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o

4-1\F 5
> ) T =exp(= 7’p). (12)

k=0

Recalling that in a transformation with a random distribution
of seeds the free-boundary fraction is equal to the untrans-
formed fraction 1-x(z), the previous equation corresponds to
the well-known Kolmogorov, Johnson-Mehl, and Avrami
(KIMA) equation [20-22] for a pre-existing nuclei transfor-
mation. This result can be extended to D=1 and D=3 trans-
formations. In the case of a PV transformation in a
D-dimensional space, the mean free-boundary fraction of the
crystals with a given k is found to be (2;;1)", this result
leading to the KIMA equation for the evolution of the overall
transformed fraction. Details of this derivation will be pre-
sented elsewhere.

Summarizing, we presented a calculation method for ob-
taining the probability density function of the geometric
characteristics of the domains in a Poisson-Voronoi transfor-
mation to an arbitrary accuracy at any finite time. The overall
probability distribution of any geometric characteristic is
demonstrated to be built up by time-invariant distributions
corresponding to the domain populations with a certain num-
ber of extended collisions. As an example, the computation
of the size probability density function is presented. As far as
we know, this is the first analytical exact result obtained for
this classic system. Furthermore, the impingement process
between domains was analyzed in terms of extended colli-
sions. It is found that each extended collision provokes the
same average reduction of the free-boundary fraction of the
domains. The presented formalism gives a detailed descrip-
tion of the space structure and includes the well-known
KJMA model, whose results are reproduced. Though the cal-
culation was restricted to a Poisson-Voronoi transformation
in a two-dimensional space, it can be easily extended to
transformations in spaces of different dimensionality.
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